Intersection of Isomorphic Linear Codes
نویسندگان
چکیده
Given an (n, k) linear code C over GF(q), the intersection of C with a code ?(C), where ? # Sn , is an (n, k1) code, where max[0, 2k&n] k1 k. The intersection problem is to determine which integers in this range are attainable for a given code C. We show that, depending on the structure of the generator matrix of the code, some of the values in this range are attainable. As a consequence we give a complete solution to the intersection problem for most of the interesting linear codes, e.g. cyclic codes, Reed Muller codes, and most MDS codes. 1997
منابع مشابه
Optimal Linear Codes Over GF(7) and GF(11) with Dimension 3
Let $n_q(k,d)$ denote the smallest value of $n$ for which there exists a linear $[n,k,d]$-code over the Galois field $GF(q)$. An $[n,k,d]$-code whose length is equal to $n_q(k,d)$ is called {em optimal}. In this paper we present some matrix generators for the family of optimal $[n,3,d]$ codes over $GF(7)$ and $GF(11)$. Most of our given codes in $GF(7)$ are non-isomorphic with the codes pre...
متن کاملThe Aluffi Algebra and Linearity Condition
The Aluffi algebra is an algebraic version of characteristic cycles in intersection theory which is an intermediate graded algebra between the symmetric algebra (naive blowup) and the Rees algebra (blowup). Let R be a commutative Noetherian ring and J ⊂I ideals of R. We say that J ⊂I satisfy linearity condition if the Aluffi algebra of I/J is isomorphic with the symmetric algebra. In this pa...
متن کاملIntersection sets, three-character multisets and associated codes
In this article we construct new minimal intersection sets in AG(r, q2) sporting three intersection numbers with hyperplanes; we then use these sets to obtain linear error correcting codes with few weights, whose weight enumerator we also determine. Furthermore, we provide a new family of three-character multisets in PG(r, q2) with r even and we also compute their weight distribution.
متن کاملLinear Codes over Finite Chain Rings
The aim of this paper is to develop a theory of linear codes over finite chain rings from a geometric viewpoint. Generalizing a well-known result for linear codes over fields, we prove that there exists a one-to-one correspondence between so-called fat linear codes over chain rings and multisets of points in projective Hjelmslev geometries, in the sense that semilinearly isomorphic codes corres...
متن کاملTwo-weight codes, graphs and orthogonal arrays
We investigate properties of two-weight codes over finite Frobenius rings, giving constructions for the modular case. A δ-modular code [15] is characterized as having a generator matrix where each column g appears with multiplicity δ|gR×| for some δ ∈ Q. Generalizing [10] and [5], we show that the additive group of a two-weight code satisfying certain constraint equations (and in particular a m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 80 شماره
صفحات -
تاریخ انتشار 1997